Asymptotic Density in Generic Extensions

Jan Grebík Charles University in Prague

January 26, 2014

Cardinal invariants and selective ultrafilter in extension

Definition

For $A \subseteq \mathbb{N}$ we define upper and lower asymptotic density of A by this formulas

$$d^*(A) = \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}$$
$$d_*(A) = \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$
Let $\mathcal{D} = \{A : d^*(A) = d_*(A)\}$. We define asymptotic density for $A \in \mathcal{D}$ by
$$d(A) = \lim_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$

 $\mathcal{D}\subseteq\mathcal{P}(\mathbb{N})$ but there are sets which does not have asymptotic density.

Example

For $i \in \mathbb{N}$ let $A_i = \{n : \text{first digit of } n \text{ is } i\}$ then $A_i \notin \mathcal{D}$ because $d_*(A_i) = \frac{1}{9i}$ and $d^*(A_i) = \frac{10}{9(i+1)}$.

In fact \mathcal{D} is not even a subalgebra of $\mathcal{P}(\mathbb{N})$ because it is not closed under unions.

Fact

If $A, B \in \mathcal{D}$ and $A \cap B = \emptyset$ then $A \cup B \in \mathcal{D}$ and $d(A \cup B) = d(A) + d(B)$.

Even more there exists a measure \overline{d} on $\mathcal{P}(\mathbb{N})$ with $\overline{d} \upharpoonright_{\mathcal{D}} = d$.

Proposition

Let $s = \{a_i : i \in \mathbb{N}\}$ be a sequence of natural numbers such that for each $i \neq j$ greatest common divisor $gcd(a_i, a_j) = 1$. Then the set

$$A_s = \{n : \forall i \in \mathbb{N} \ a_i \not| n\}$$

has asymptotic density and

$$d(A_s) = \prod_{i \in \mathbb{N}} (1 - \frac{1}{a_i}).$$

Example1

For k > 1 let $P_k = \{n : \forall p \ p^k \ | n\}$ then $P_k = A_{s_k}$ where $s_k = \{p_i^k\}$ where p_i is the i-th prime number. Then by Euler formula

$$d(P_k) = \prod_{i \in \mathbb{N}} (1 - \frac{1}{p_i^k}) = \frac{1}{\sum_{n \in \mathbb{N}} \frac{1}{n^k}} = \frac{1}{\zeta(k)},$$

where ζ is Riemann zeta function.

Example2

 P_2 is called set of squarefree numbers and $d(P_2) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}$. Let $\alpha \in \{0, 1\}$ and $P_2^{\alpha} = \{k : k = p_{i_1} \dots p_{i_m} \text{ and } m \equiv \alpha \mod 2\}$ then

$$d(P_2^{lpha})=rac{3}{\pi^2}.$$

Definition

$$\mathcal{Z} = \{ A : A \subseteq \mathbb{N}, d(A) = 0 \}$$
$$\mathcal{F}in = \{ A : A \subseteq \mathbb{N}, |A| < \omega \}$$

Theorem (???)

$$\mathcal{P}(\mathbb{N})/\mathcal{Z}\cong\mathcal{P}(\mathbb{N})/\mathcal{F}$$
in * $\mathbb{B}(\mathfrak{c})$

Proof, sketch of first part

Let $I_n = [2^n, 2^{n+1})$ and $X \subseteq \mathbb{N}$. Define $f : \mathcal{P}(\mathbb{N})/\mathcal{F}in \to \mathcal{P}(\mathbb{N})/\mathcal{Z}$ with following formula

$$f([X]_{\mathcal{F}in}) = [\bigcup_{n \in X} I_n]_{\mathcal{Z}}.$$

Then since

$$X \in \mathcal{Z} \Leftrightarrow \lim_{n \to \infty} \frac{X \cap [2^n, 2^{n+1})}{2^n} = 0$$

f is regular embedding.

First question about generic extension is size of c.

Proposition

Forcing with $\mathcal{P}(\mathbb{N})/\mathcal{F}$ in collapses \mathfrak{c} to \mathfrak{h} , where \mathfrak{h} is distributivity number of $\mathcal{P}(\mathbb{N})/\mathcal{F}$ in. $\mathbb{B}(\kappa)$ is c.c.c. so does not collaps cardinals. All together \mathfrak{c} in extension is \mathfrak{h} in groundmodel. An ultrafilter \mathcal{U} is selective if for every partition $\{J_n\}_{n\in\omega}$ of \mathbb{N} there exists $k \in \omega$ such that $J_k \in \mathcal{U}$ or there exist $U \in \mathcal{U}$ such that $|U \cap J_n| = 1$ for every $n \in \omega$.

Question

Is there a selective ultrafilter in extension by $\mathcal{P}(\mathbb{N})/\mathcal{Z}$??

Answer

If $\mathfrak{h} = \omega_1$ in *V* then we can construct a selective ultrafilter because *CH* is true in *V*[*G*]. Otherwise we do not know.

Fact

Because of
$$\mathbb{B}(\mathfrak{c}) \operatorname{cov}(\mathcal{M}) = \operatorname{non}(\mathcal{N}) = \omega_1$$
 in extension.

Theorem (Canjar)

Every filter generated by $< \mathfrak{c}$ elements can be extended to a selective ultrafilter iff $cov(\mathcal{M}) = \mathfrak{c}$.

Generic filter over $\mathcal{P}(\mathbb{N})/\mathcal{F}$ in is selective in extension.

Theorem (Kunen)

Selective ultrafilter in *V* cannot be extended to P-(selective) ultrafilter in *V*[*G*] where *G* is generic over $\mathbb{B}(\kappa)$. Forcing with $\mathbb{B}(\kappa)$ where $\kappa > \mathfrak{c}$ creates universe without selective ultrafilters.

What about $\mathbb{B}(\kappa)$ where $\kappa \leq \mathfrak{c}$??

Proposition

In V[G] $\mathfrak{h} = \omega_1$ and because of that

 $V^{\mathcal{P}(\mathbb{N})/\mathcal{Z}*\mathcal{P}(\mathbb{N})/\mathcal{Z}} \vdash CH.$

In otherwords there are selective ultrafiltres after two step iteration of $\mathcal{P}(\mathbb{N})/\mathcal{Z}.$

Thank you.